熱門搜索關鍵詞:視覺光源 工業(yè)機器人系統(tǒng)平臺智能視覺軟件遠心系統(tǒng) 光伏視覺檢測
機器視覺是通過計算機來模擬人類視覺功能,以讓機器獲得相關視覺信息和加以理解??煞譃?ldquo;視”和“覺”兩部分原理,“視”是將外界信息通過成像來顯示成數(shù)字信號反饋給計算機,需要依靠一整套的硬件解決方案,包括光源、相機、圖像采集卡、視覺傳感器等;“覺”則是計算機對數(shù)字信號進行處理和分析,主要是軟件算法。
機器視覺在工業(yè)上應用領域廣闊,核心功能包括:測量、檢測、識別、定位等。產業(yè)鏈可以分為上游部件級市場、中游系統(tǒng)集成/整機裝備市場和下游應用市場。機器視覺上游有光源、鏡頭、工業(yè)相機、圖像采集卡、圖像處理軟件等軟硬件提供商,中游有集成和整機設備提供商,行業(yè)下游應用較廣,主要下游市場包括電子制造行業(yè)、汽車、印刷包裝、煙草、農業(yè)、醫(yī)藥、紡織和交通等領域。
機器視覺全球市場主要分布在北美、歐洲、日本、中國等地區(qū),根據(jù)統(tǒng)計數(shù)據(jù),2014年,全球機器視覺系統(tǒng)及部件市場規(guī)模是 36.7 億美元,2015年全球機器視覺系統(tǒng)及部件市場規(guī)模是42億美元,2016年全球機器視覺系統(tǒng)及部件市場規(guī)模是62億美元,2002-2016年市場年均復合增長率為百分之12左右。而機器視覺系統(tǒng)集成,根據(jù)北美市場數(shù)據(jù)估算,大約是視覺系統(tǒng)及部件市場的6倍。
中國機器視覺起步于80年代的技術引進,隨著98年半導體工廠的整線引進,也帶入機器視覺系統(tǒng),06年以前國內機器視覺產品主要集中在外資制造企業(yè),規(guī)模都較小,06年開始,工業(yè)機器視覺應用的客戶群開始擴大到印刷、食品等檢測領域,2011年市場開始高速增長,隨著人工成本的增加和制造業(yè)的升級需求,加上計算機視覺技術的快速發(fā)展,越來越多機器視覺方案滲透到各領域,到2016年我國機器視覺市場規(guī)模已達近70億元。
機器視覺中,缺陷檢測功能,是機器視覺應用得較多的功能之一,主要檢測產品表面的各種信息。在現(xiàn)代工業(yè)自動化生產中,連續(xù)大批量生產中每個制程都有一定的次品率,單獨看雖然比率很小,但相乘后卻成為企業(yè)難以提高良率的瓶頸,并且在經過完整制程后再剔除次品成本會高很多(例如,如果錫膏印刷工序存在定位偏差,且該問題直到芯片貼裝后的在線測試才被發(fā)現(xiàn),那么返修的成本將會是原成本的100倍以上),因此及時檢測及次品剔除對質量控制和成本控制是非常重要的,也是制造業(yè)進一步升級的重要基石。
1)準確度高:人類視覺是64灰度級,且對微小目標分辨力弱;機器視覺可顯著提高灰度級,同時可觀測微米級的目標;
2)速度快:人類是無法看清快速運動的目標的,機器快門時間則可達微秒級別;
3)穩(wěn)定性高:機器視覺解決了人類一個非常嚴重的問題,不穩(wěn)定,人工目檢是勞動非??菰锖托量嗟男袠I(yè),無論你設計怎樣的獎懲制度,都會發(fā)生比較高的漏檢率。但是機器視覺檢測設備則沒有疲勞問題,沒有情緒波動,只要是你在算法中寫好的東西,每一次都會認真執(zhí)行。在質控中大大提升效果可控性。
4)信息的集成與留存:機器視覺獲得的信息量是多元化且可追溯的,相關信息可以很方便的集成和留存。
機器視覺技術近年發(fā)展迅速
1)圖像采集技術發(fā)展迅猛
CCD、CMOS等固件越來越成熟,圖像敏感器件尺寸不斷縮小,像元數(shù)量和數(shù)據(jù)率不斷提高,分辨率和幀率的提升速度可以說日新月異,產品系列也越來越豐富,在增益、快門和信噪比等參數(shù)上不斷優(yōu)化,通過核心測試指標(MTF、畸變、信噪比、光源亮度、均勻性、色溫、系統(tǒng)成像能力綜合評估等)來對光源、鏡頭和相機進行綜合選擇,使得很多以前成像上的難點問題得以不斷突破。
2)圖像處理和模式識別發(fā)展迅速
圖像處理上,隨著圖像高精度的邊緣信息的提取,很多原本混合在背景噪聲中難以直接檢測的低對比度瑕疵開始得到分辨。
模式識別上,本身可以看作一個標記過程,在一定量度或觀測的基礎上,把待識模式劃分到各自的模式中去。圖像識別中運用得較多的主要是決策理論和結構方法。決策理論方法的基礎是決策函數(shù),利用它對模式向量進行分類識別,是以定時描述(如統(tǒng)計紋理)為基礎的;結構方法的核心是將物體分解成了模式或模式基元,而不同的物體結構有不同的基元串(或稱字符串),通過對未知物體利用給定的模式基元求出編碼邊界,得到字符串,再根據(jù)字符串判斷它的屬類。在特征生成上,很多新算法不斷出現(xiàn),包括基于小波、小波包、分形的特征,以及獨二分量分析;還有關子支持向量機,變形模板匹配,線性以及非線性分類器的設計等都在不斷延展。
3)深度學習帶來的突破
傳統(tǒng)的機器學習在特征提取上主要依靠人來分析和建立邏輯,而深度學習則通過多層感知機模擬大腦工作,構建深度神經網(wǎng)絡(如卷積神經網(wǎng)絡等)來學習簡單特征、建立復雜特征、學習映射并輸出,訓練過程中所有層級都會被不斷優(yōu)化。在具體的應用上,例如自動ROI區(qū)域分割;標點定位(通過防真視覺可靈活檢測未知瑕疵);從重噪聲圖像重檢測無法描述或量化的瑕疵如橘皮瑕疵;分辨玻璃蓋板檢測中的真假瑕疵等。隨著越來越多的基于深度學習的機器視覺軟件推向市場(包括瑞士的vidi,韓國的SUALAB,香港的應科院等),深度學習給機器視覺的賦能會越來越明顯。
4)3d視覺的發(fā)展
3D視覺還處于起步階段,許多應用程序都在使用3D表面重構,包括導航、工業(yè)檢測、逆向工程、測繪、物體識別、測量與分級等,但精度問題限制了3D視覺在很多場景的應用,目前工程上先鋪開的應用是物流里的標準件體積測量,相信未來這塊潛力巨大。
要全免替代人工目檢,機器視覺還有諸多難點有待攻破:
1)光源與成像
機器視覺中清晰的成像是第一步,由于不同材料物體表面反光、折射等問題都會影響被測物體特征的提取,因此光源與成像可以說是機器視覺檢測要攻克的第一個難關。比如現(xiàn)在玻璃、反光表面的劃痕檢測等,很多時候問題都卡在不同缺陷的集成成像上。
2)重噪音中低對比度圖像中的特征提取
在重噪音環(huán)境下,真假瑕疵的鑒別很多時候較難,這也是很多場景始終存在一定誤檢率的原因,但這塊通過成像和邊緣特征提取的快速發(fā)展,已經在不斷取得各種突破。
3)對非預期缺陷的識別
在應用中,往往是給定一些具體的缺陷模式,使用機器視覺來識別它們到底有沒有發(fā)生。但經常遇到的情況是,許多明顯的缺陷,因為之前沒有發(fā)生過,或者發(fā)生的模式過分多樣,而被漏檢。如果換做是人,雖然在操作流程文件中沒讓他去檢測這個缺陷,但是他會注意到,從而有較大幾率抓住它,而機器視覺在這點上的“智慧”目前還較難突破。
4.機器視覺系統(tǒng)未來發(fā)展趨勢
1)嵌入式解決方案發(fā)展迅猛,智能相機性能與成本優(yōu)勢突出,嵌入式PC會越來越強大
2)模塊化的通用型軟件平臺和人工智能軟件平臺將降低開發(fā)人員技術要求和縮短開發(fā)周期
3)3d視覺將走向更多應用場景
文章轉載自:新機器視覺,如涉及作品版權問題,請聯(lián)系我們刪除或做相關處理!
維視智造科技股份有限公司是國內專業(yè)的人工智能與機器視覺解決方案提供商。面向制造企業(yè)生產線構建商、系統(tǒng)集成商和設備供應商,提供機器視覺技術產品的設計、研發(fā)、生產和銷售。產品包括工業(yè)視覺部件、遠心光學產品、智能視覺系統(tǒng)和設備,柔性視覺質量檢測線等,為客戶提供達到先進的機器視覺整體解決方案。
維視智造是擁有16年歷史的機器視覺行業(yè)專業(yè)品牌,專注于機器視覺與人工智能核心算法技術,擁有行業(yè)內完善的產品鏈,豐富的機器視覺與視覺機器行業(yè)解決方案及用戶案例。
在北京、蘇州、深圳、西安、成都、桂林等地建立了多個分子公司,設立視覺解決方案開放實驗室,通過全國的分子公司、系統(tǒng)集成商和代理合作伙伴,視覺項目經理,為用戶提供工業(yè)視覺產品與智能視覺系統(tǒng)解決方案的選型、評估、實施、運維等服務。
Tel:4000-400-860